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INTRODUCTION.

§1. In Vol. XX. (1872) of the Proceedings of the Royal Society (pp. 160-168) is
a beautiful paper by the late Professor CLERK MAXWELL giving an investigation of
the induction of currents in an infinite plane sheet of uniform conductivity. For the
purposes of the investigation the sheet is supposed infinitely thin; and when it is at
rest and influenced by a varying external magnetic system, the effect of the currents
induced in it is found to be equivalent to an infinite train of images, at the sheet, of
the external system, which, after being formed, move off to infinity with uniform
velocity. 'When the external system revolves uniformly round an axis normal to the
sheet, the effect is shown to be the same as if the sheet itself revolved round the axis
and the magnetic system remained fixed. The images will then lie in a spiral trail
in the form of a helix whose axis is perpendicular to the sheet. This theory was
afterwards reproduced in his ‘ Treatise on Electricity and Magnetism, and the latter
part proved directly from the equations. The analysis there given is somewhat
difficult to follow, though it is doubtless possible to present it in a more logically
exact form.

The problem of the induction of currents has also been treated by Ferict
(TerToLINT'S ¢ Annali,’ 1853-54) and by JocEMANN (CRELLE, 1864, and Poge. Ann.,
1864). JocumANN has solved the case of a sphere which rotates uniformly in a
magnetic field symmetrical about the axis of revolution and finds that no currents
will be generated in it, but that there will be a certain distribution of free electricity
throughout its interior and over its surface. He has also handled the case of an
infinite plate of finite thickness, which revolves uniformly round a mnormal, by
neglecting the inductive action of the currents on themselves, and shows that the
conditions of the problem may then be satisfied by a system of currents parallel to
the faces of the plate ; he has also traced the forms of the current and equipotential
lines in some simple cases. The solution, however, as MAXWELL has shown in the
case of a thin copper disc, can be true only for very small values of the angular
velocity.
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HermuoLTZ, in an elaborate memoir on the ‘ Equations of Motion of Electricity,”
in CRELLES Journal (vols. 72, 78), has given an exhaustive analysis of the conditions
which have to be satisfied in any problem regarding the movement of electricity, and
has proved very clearly that the solution of any problem is unique; but he has not
dealt with any special case of the problem of induced currents.

MAXWELL’S investigation remains up to the present, so far as I am aware, the only
case in which the complete solution of any case of induction has been published.

German writers on current electricity have usually adopted some form of the theory
of action at a distance between the elements of different currents, and the free elec-
tricity is conceived as a scalar quantity distributed with a certain density throughout
the interior and over the surface of conductors. MAXWELL's theory, which is adopted
in the present paper, though it leads generally to similar equations, differs notably
from the other in both these respects. The energy is supposed to be seated every-
where in the surrounding medium, and the free electricity is the convergence of
a vector quantity termed the electric displacement. The total current, to which
electro-magnetic phenomena are due, is compounded of the current of conduction and
the time-variations of the electric displacement. Owing to this peculiarity of the
theory, the conditions to be satisfied at the surface of separation of two substances
will differ from those given by HrrLmmoLTz. I have therefore analysed them some-
what fully : taking first, for the sake of generality and the simplicity which it gives,
the most general case of two substances in which both the conductivity and specific
inductive capacity are to be retained. We can then deduce the conditions at the
common surface of two conductors, or of a conductor and a dielectric, which is the
case with which we have to do.

One special result of these conditions is that when the vector potential, at the
surface, due to all the currents or magnets in the field is at each point perpendicular
to the surface of the conductor, the electric potential will vanish everywhere, and
there will be no free electricity present. either in the conductor or on its surface.

This happens in the case of an infinite plane plate of any thickness. The vector
potential (or electro-magnetic momentum) is then everywhere parallel to the surface
of the plate, and is derived by vector differentiation from a function P ; the current
in it is also everywhere parallel to the surface and is derived from a single current
function ®. It also appears that P is the potential of imaginary matter distributed
with density ® ; and, during the decay of the currents, P satisfies an equation of the
same form as that which regulates the diffusion of heat throughout a solid.

When the plate is infinitely thick there will be no reaction in the inducing system ;
but when it is very thin, the effect will be that given by MAXWELL as already
explained, The general formulee in this case reproduce his results.

For a solid sphere or shell bounded by two concentric spherical surfaces, the vector
potential and current are everywhere at right angles to the radius vector to the
common centre, and their values may be derived from two functions, P and ®, which
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are related to each other as in a plane plate; during its decay also, P follows the
same law as in that case.

When the shell is infinitely thin, the effect, on an external point, of the currents
excited in it may be represented by the following system of images, which constitute
a generalisation of those of MAXWELL. Divide the time into an infinite number of
equal intervals, and at the commencement of any of these let a positive image of the
system be formed in the place occupied by its electric image at the surface. Let the
parts of this image move towards the centre in straight lines so that the logarithmic

decrement, of their distances from the centre is constant and equal to -é% (R being
the resistance of the shell and a its radius), and let the intensity of the image increase

at each point with a constant logarithmic rate %. At the end of the interval let an

exactly equal but negative image be formed in the place of the former and move

towards the centre in the same manner, and let these operations be repeated at the
commencement and end of every interval during which the external system is varying ;
the action of the sheet on external points will be that due to the above train of
images. The action on a point within the sheet may be represented in a somewhat
similar manner.

When the shell possesses a finite thickness, or is a solid sphere, it is not possible to
express its effect so simply. The variations in the external system produce continually
new systems of currents, the law of whose decay may be exhibited by expressing P in
a series of terms containing each the product of a tesseral harmonic, a “spherical ”
function of the radius, and an exponential ¢™, the coefficients of which are to be
found by known methods.

‘When the shell degrades into an infinite plate, the “spherical ” function becomes
an exponential or circular function, and the tesseral harmonic becomes the product of
a factor cos me or sin m¢ by a BesseL’s function J,(kp). The coeflicients might then
be found by means of NEUMANN’S theorem for expanding f(x, ) in BESSEL’S functions ;
but their deduction from the corresponding problem of spherical harmonic analysis
throws an interesting light upon NEUMANN’S expansion, and especially on the meaning
of the symbol o in the limits of integration.

When a symmetrical conductor revolves uniformly about its axis of symmetry for
a sufficient length of time, the currents and electric distribution become steady, and
the total currents are then identical with' the currents of conduction. In the case of
a plate or spherical shell, the vector potential and currents are expressible in the same
manner as before in terms of two functions P and &, which are still related to each
4%_ v P= wd(—Pd_;;liz.

The general results of calculation verify MAXWELL's theorem of the spiral trail of

other as formerly. The equation which now determines P is

images due to an infinitely thin plate. The theorem is also extended to a spherical
28 2
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current sheet ; the trail here becomes conical, the locus of points in it, which corre-
spond to a given point of the influencing system, forming a curve which would
become portions of an equiangular spiral, if the cone on which it lies were developed
on a plane.

The determination of the coefficients in the problems having reference to a sphere
or spherical shell depends on the elementary formulse of reduction of the spherical
functions. By adopting a particular mode of constructing the theory of these
expressions, it is possible to obtain the necessary properties almost immediately from
the definitions : a short sketch of the subject is therefore given, confined, however, to

the results which are necessary for the subsequent analysis.

General equations.

§2. The general equations of the field in MaXWELLs theory are expressed in

terms of
The electro-magnetic momentum at a point, F, G, H
The magnetic induction a, b, ¢
The magnetic force o, B,y
The total electric current U, v, W
The current of conduction P q T
The electric displacement fog b
The electromotive force’ P,Q, R
The velocity of a point , Q, 2

We have also the following scalar quantities,

The electric potential i,
The magnetic potential Q,
The conductivity for electric currents C,

. . 1
The resistance to conduction, o= o

The dielectric inductive capacity K,
The free electricity at any point in the substance of the conductor e

per unit of volume, on the surface € per unit of area.

Since the dielectric surrounding the conductors is air, we may treat the magnetic
induction and magnetic force as identical, and we may put

dH  dG
a_—@-—?"lg, &e. . . . . o .0 L (1)
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The total electric current u, v, w is connected with the magnetic force by equations
of the form,

W B e ()

dru=— &y

and satisfies the equation of continuity
dw  dv dw
Tt dy + 4

If we put

I _df

U=pto, +

dp++dz =0. . . ...

expressing that the loss of electricity by conduction through the faces of an element
is equal to the loss of free electricity in the element, a result which may be taken as
self evident. |

If we put with Maxwerr, p=CP, f_- P &c., this equation may be written

K de
C€+Z‘ T -0,
If €, be the initial value of ¢,
e=— eoe—éim%t

showing that any initial electrification will rapidly disappear in a conductor for which
x is small compared to C. When the substance does not conduct we shall have
e=¢,; so that if we suppose air and other non-conductors initially uncharged, they
cannot acquire any charge.

The equations which determine the vector potential or electro-magnetic momentum
in terms of the current are

= [£deayar, s,

where r=1/(x—a')?+ (y—vy')*+ (z—7)%, and the integrations are to be extended over
all space where there are currents, whether these be currents due to conduction, or
time-variations of the electric displacement. F, G, H are thus the potentials of
distributions of imaginary matter of finite density; and, therefore, in crossing the
surface which divides two substances in the field, we shall have
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F =F, G=G, H=H
dF _dF’ dG _ dG’ dH df}_{ﬁ’ N €Y
dN " dN’ dN " dN’ dN _ dN’

I, G/, H being the components of the electro-magnetic momentum in the second
substance, and dN an element of the normal drawn from the first into the second.
The other boundary conditions are more difficult to recognise. Let us first confine

our attention to the common surface of separation of two substances at rest. In the
first the equations of electromotive force are

| dF _dy )

P=— dt dx

__AdG_dy
Q_—dtdyr"""""@)

a_ay

Tdt de

with similar equations for the second. Let /, m, n be the direction cosines of the
normal (N) at any point, and let gf =IF+mG-+nH ; then, since

<o+4— %>P &e.,

K d\dff vy
bu v nap=— ((“'1'4 dt> dt (C i dt> AN’
and, for the second substance,
- , K d\df [r K d\dy
/ 4 PR I S
b -/ +mow'= <C dor dt> dt <C Tir dt) dN"
The condition of ¢ continuity” at the surface requires that

lu+motnw=Il'+mv +nw,

and therefore

I (o KD\ (o K Dy
{C O+< 4ar > } +< 4'n'dt>dN <C+47Tdt>dN 0. . (6)
The free electricity € at the surface is given by

dme =K (—%—%) —K’(—(%F—%)

:(KO'-K'O)(C-—C’+<I%;I-<~/> dt) (jj;’; ﬁ;) R ()
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(@) When both the substances are good conductors, we may take K=K'=0; the
equations then become
—onF oW _ ¥
(© C)dt +CdN C ax =Y ()

€=0

(b.) When the first substance is a conductor and the second a non-conductor (air),
we shall have K=0, ('=0; the equations are then, electro-magnetic measurements
being still employed,

aNdF | oK ddy
(O 47rdt> O " traran =

’ : (8)
4 =—K'C <0 K >"1<ql_«_!f_d«1r>

4o dt dN dN

But K’ is infinitely small compared to C; and therefore, 1if we write (¢') for the
electrostatic measure of €, we shall have

¢Zj+d«p —o jl

4W(e')d"’d".'|}”"“””(9)
dN dNJ

We may derive an important corollary from these results.
If 4F is always =0 at the surface of the conductors (as will be the case in the
following problems), we shall have

dy
N=0 o (10)

But from equations (5), remembering that e=0, we derive

s . B P&
v %y=0, where v d2+ TR e (11)

within the conductor, therefore, s is everywhere zero; and since ¢ always satisfies the
equation v 2%y’'=0 outside the surface and is zero at every point of it, it follows that ¢/
is also everywhere zero, and there is no free electricity either within or upon the
conductor.

Let us now collect the results of the above discussion, so far as it relates to a
conductor disturbed by the introduction or variation of a magnetic system in a space

surrounded by air ; putting K=0, and writing o for }6’
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(1.) Within the conductor

T, dEF  dnr
VY=
7 G _d_G_‘illk
4 dt  dy

dH  dyr
Lo 2 — el &)
4ar H= dt dz

e=0, V=0

(2.) Outside the conductor C'=0, and K’ may be neglected ; therefore
v F'=0, v*G'=0, v*H =0,
€'=0, v¥'=0,
(€"=electric density outside).
(8.) At the surface of the conductor

dF  dF’
.
F=F, n=a &

WL 0, $=IF4mGnl, p=y'

W Ay
dn(<)= d‘{:r aN'

(4.) When 4F=0, ¢=0, =0, ¢€=0, and the currents are confined to the
conductor.

When the conducting substance is moving in any manner, the equations of electro-
motive force are (MaxweLL, Vol. IT., Art. 598)

. - dF d
P.:yy—,Bz———-—\k

dx

. dG

Q_az YT T dy
.. JH iy
R=Br—ay— G de

If we differentiate these with respect to x, y, z and add, putting for —“+ + dlj

its electrostatic value 4m(e), we find

N

=—-4—1-7;(ua'7+17_7./+wé)+2(W’01+136;’2+'}"‘.’3)—V2¢- coe (12)
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where ‘;’1, a.)z, a.)3 are the angular velocities of the element at x, ¥, 2. We cannot,
therefore, look upon y as the potential of free electricity ; in fact it is easy to see that
there will be no free electricity inside it, just as when it was at rest. If the conductor
be symmetrical about an axis, and revolve about it sufficiently long for the currents to
become steady, the total current will become identical with the conduction current, and
there will be no flow across the surface. We may then take at every point of the

surface
lu+mv+nw=0.

The triple integrals in the expressions for F, G, H are then to be taken only
dF
ZL\T:
passing across the surface ; and outside, F, G, H satisfy the equations

throughout the conductor, and we shall have as before ¥ and &ec., continuous in

vIF=0, v*G=0, v*H=0.

The special problems which are solved in the present paper depend for their solution
on certain properties of the vector potential ; and it will therefore not be out of place
to devote ‘a little space to their preliminary discussion. We shall thereby gain a
clearer insight into the subsequent analysis.

The vector potential.

§ 3. (A.) We shall first examine the nature of the vector potential inside a space
due to magnets or currents outside that space. It is connected with the magnetic

potential 22 by the equations.
(a.) dH_dG__ dn "

and it is clear that, if we can find one set of values F, G, H satisfying the equations
when £2 is supposed given, the complete values will be

N G gy
F+dﬁ7, G+dy’ H+ z’

where x is an arbitrary function of @, y, 2. It is therefore necessary for our purpose to
find one solution only.
MDCCOLX XXT. 2T
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If we can express Q in the form

d d a
Q_KA@+B@+C£FX (1
where P satisfies the equation v*P=0, the equations are satisfied by

d d
F:@@—C@F

d d o

G:@%—A%ﬁr. (15)
a a

H:(%@—BgﬁPJ

and, in particular, if
am |
dz
R 1))

These expressions (15) may be easily verified by actual differentiation, taking account
of v?P=0, and may be looked upon as a generalisation of the equations given by
Maxwern (‘Electricity,” Art. 405). They give additional interest to his expression for
a solid negative harmonic

a d a 1
(Ag+ B%+o%) (A 4B +0ﬂdz> 2

and in forming F, G, H any one of the n factors may be chosen to furnish A, B, C;
the results obtained by taking two different factors differing by quantities of the form
E;—C, %, d—f’ as I have verified. When Q is a solid harmonic of positive degree, it is
more convenient to use the simplified form (16), and in the case of a tesseral solid
harmonic, the results of differentiation give rise to a series of Very interesting
theorems, which, however, do not interest us at present.

It will be observed that the expressions given for F, G, H satisfy the equation of no

convergence

P d dH
‘+G =0.

(b.) When we use semipolar coordinates p, ¢, z, given by

z=pcos, y=psingd . . . . . . . . . (I7)
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the equations (13) transform into

dH _dpG_ _ 40 7

pdd  pdz” dp

dF  dH a0

— = == .. . . . . . . (18
% —dp b [ (18)
dpG_ dF _ _dQ

pdp  pdg dz

Here F, G, H are now the resolved components of F, G, H in the p—, ¢—, 2—
directions, and the equations are obtained by resolving the two sides of equations (13)
in these directions. The expressions on the left hand sides of the above equations
are most readily recognised by observing that, when they vanish, we must have

[Fda+Gdy+Hdz=]Fdp+Gpdp+Hdz

an exact differential. The equations themselves are satisfied by

Q:% , VIP=0,
14p (19)
F=— G=+4-, H=0
p de’ +
and the condition of no convergence
fl—) d;; -l—j;;) LZ—H=O is satisfied.
(c.) If we employ polar coordinates », 6, ¢
[Fda+ Gdy+Hdz|=Fdr+Grdf+H.r sin 0d¢
and the results of transforming the coordinates are obviously
1 /drsin6H dsG\_ dQ )
7”2Sin9< ae _dqb)_—ch"
1 /[dF drsin 0H aQ
wsin@(cﬁ— dr > T rdf Foeoe s 20
9%?._(} dF =
dr d6> T 7 sin 0de

These equations are satisfied by
2 1 2
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a
Q=_(P), v*P=0 )

o de.......i(zl)

sin Od¢’ =+ 7

F=0, G=—

and may be readily verified by substitution and actual differentiation, as in the former
cases, observing that v?P=0. They coincide with the expressions given by MAXWELL
(Vol. IL., Art. 671), and before him by JocHMANN ; they likewise satisfy the condition
of no convergence, which in this case is

1dFr? 1 dsinfG,. ddH 0
™ dr " rsing df rsin 0dgp

(B.) The vector components of the electro-magnetic momentum give rise to the
vector potential of the magnetic force in the space in which the currents themselves
exist : we shall therefore enquire what distribution of currents must be assigned that
the vector potentials due to them may be respectively of the foregoing types.

(a.) Rectangular coordinates.

The equations to be satisfied are

_dy_iB
47m_dy 7
_an_ac
“—dy dz’
If we take
dap ap
F—-—-@, G——;l;, H=o0 . . . . . . . . (221)

we find that the above equations are satisfied by

= TP g AP &P PP
= T dwde PT Ty Y dr T ayp
. (22y)
Ao AP 0
=gy T T

where .
4= —Vv?P,

® is here the current function, and v 2P is not now supposed to be equal to zero;
in fact, nothing is at present. supposed to be known about it.

(b.) Semipolar coordinates.

The x— and y— directions are variable and are supposed to be in the directions of
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dp and d¢ respectively, the directed quantities, as above, preserving their former
designations.

Our equations are
(v _dpB _d_dy _1<El£§ @f)
47ru—P<d¢ i >, 477’0-—dz o’ 47Tw-—P do —dd
LY _dpt o dF_ 4 1(dpG_dF
*=o\de dz ) " dp’ YT\ dp de)
and we may satisfy these by
1dP dp ., :
F=~— Pd(bG_%,H-—O e e e e (28
and
d*P 1 d*P 14d 1 d°P
= T dpd B=- pdpdy 7T pdp< dp>+ 2 g (25)
1 @9 Q)_@ w—_O . . . . <l 2
pay " dp’
drd=—V?P;
here
o L4 4 1@ B
Vi=pap Pap Tap Taz
(c.) Polar coordinates.
The equations in this case are, resolving along dr, rdf, r sin 0d¢

_ 1 [dysind dB __ 1 [da drysing drB da

47Tu_7' sin 6’< de _rcj))’ dmo= 7 sin 0<d¢>_ dr )’ 47rw—'r<d7' —670>

_ 1 [dHsin® dG ' _ _ .

a=——\"a )T L= 5
and we may put in these
1
F=0, G=— qus H—d—. B
L e 1 @R @) 1 #en
“""r[sinede‘sm bao +sin20d¢2:l’ B== w8’ V=" 750 drdg l (24,
0 4o ?
w=0 v smﬁdcf) “+d9 J
where

drdb=— v ?P.
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General problem of induction.

§ 4. The problems to which we shall chiefly devote our attention in what follows are
the induction of currents in a plate (i) of finite and (iL.) of infinitesimal thickness,
either at rest or revolving uniformly about an axis normal to its faces, and in a sphere
or spherical shell either of finite or infinitesimal thickness under the same conditions.

We may observe however, preliminarily, that any solution of any problem of induc-
tion which satisfies all the conditions of the question is the only solution that can exist.
For all the equations being linear the difference between the functions which express
two solutions would also satisfy all the differential equations, and would correspond to
the case in which the conductor is under no external inducing forces, and therefore no
currents can be set up in it.

This observation has been made by MAXWELL and has been established more in
detail by HeLMHOLTZ in his memoir. From the linearity of the equations we may also
conclude that the effect of different systems acting either simultaneously or in succes-
sion may be found by adding the effects due to each separately.

In particular, when the conductor is at rest, its state at any time ¢ may be considered
as the aggregate effect produced by a continuous series of impulses during its
previous history. The effect of each of these impulses, after being received, decays
according to a certain law, and each contributes a certain amount to the total result at
any time. The characteristic equation in these investigations is

i—rva:C%(P-l-PO) L (25)
where P, is due to the direct action of the external electro-magnets.

Let an impulsive change take place in this external system, by which P suddenly
rises from 0 to P, and let P increase at the same time from 0 to P’; then, integrating
the above equation during the impulse, we obtain

P4Py=0 . . . . . . . . . . (26

The impulse having been administered, P decays according to a law peculiar to each
system, and satisfies during its decay the equation
7 Sop_®® :
LVP=a s (27)
Let Py(¢) be the value of P, at any time ¢: this value may be supposed to have
been accumulated by impulses during the previous history of the system, and, if 7 be
the time measured backwards from ¢, we may express this fact by the equation

. *dP(t—
Poz ——.“0 "J%"T—QCZT .
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Let x(P,) represent the law of decay of a system which was initially represented by
P,; then, combining equations 26 and 27, we see that the complete value of P at any
time for the system is given by

P=+J’:X,'<OZ—P9%)>.OZT e o e oo (28)

To complete the solution, therefore, we have only to determine the nature of X

Case of an wnfinite plate of finite thickness.

§ 5. Let us now take up the case of an infinitely extended plane plate of thickness
20, and suppose the origin somewhere midway between the two faces of the plate so
that its faces are determined by z=4-0.

The scalar and vector potentials of external magnets or currents may be denoted by

0,=20 F=="00 G=t0 H=0 . . . ... (29)

The equations of the currents in the plate will have for their type

__AF+F) av
o-u_-—dt—-dw.........(SO)

and we shall prove that all the conditions of the problem may be satisfied by taking

<
v=0, F=—2 a=" H=0
dy’ dx
dab  dd
’I,{,:—-”d—y (] o) w=20 > C e e e e (31)
L
47T<I>_ v?*P

-~

The equations of electromotive force are now reduced to the single characterlstlc
equation

a
%erP—oz_,t(P+P°) Co e (89)

Since there is no free electricity anywhere present, the currents in the plate are
closed currents, and therefore ¥, G, H and their differential coefficients are all con-
tinuous in passing across the boundary of the conductor All these conditions will be
satisfied by having '
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P outside =P inside
dz outsxde dz inside

when z=-b; and it must be remembered that; outside the plate, the vector potential
is determined by
dp ap
— % A Y o __ 9P
F= iy G=_,H=0, v?P=0 . . . . . . . (34)
If we employ semipolar coordinates the equation in P in the substance of the plate

may be written
o(dP  1dP 1 d°P d°P dP
: dm\dp® " p dp ' p d¢ d?) " dt
To satisfy it, put .
P= cos m¢J.(kp)(A cos nz+Bsinnz)e™ . . . . . . (35)

where J,,(xp) is BESSEL’s function of the m™ degree satisfying the equation

1dJ m?
‘“"';d—p <K2—;;>J=o L (38)
and
=4%(K2+%2) O (37)

We observe also that « is a constant, which the problem does not enable us to
determine : it must therefore be supposed to have all values from 0 to w; m is

necessarily a positive integer.
Outside the plate P is given by v?P=0, and is satisfied by

P=e¢" cos m¢dJ,(kp).Ce™, z positive (39)
P=e"" cos mpJ,.(kp).De*, z negative [~~~ 7V

it, being observed that P must vanish when z= o0
To determine n, we have, by equations (33),

(1) when z=-b.
A cos nb+Bsin nb =Ce™®
—n(A sin nb—B cos nb)= —«kCe™,
(2) when z=—b
A cos nb—Bsin nb =De™
~+n(A sin nb+B cos nb) = kDe™.
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Eliminating C and D,
A(x cos nb—n sin nb)+ B(k sin nb+-n cos nb) =

A(k cos nb—mn sin nb) —B(k sin nb4n cos nb)=0.

From these we find

(1) B=0, nsin nb—« cos nb=0, C=Ae* cos nb=D
(2) A=0, ksin nb+4-n cos nb=0, C=Be cos nb=—D |

Putting all these together we obtain

inside the plate P=3® cos meJ,.(kp)(A cos nze™+B sin n'ze™)

+similar terms in sin m¢ |
outside, 2+,  P=3® cos m$J,.(kp)(A cos nbe™+B sin n'be™)e~ D4 |> (40)
outside, z—"¢, P=3% cos mpJ,.(kp)(A cos nbe™—B sin n'be™) eV J

where

nsin nb—«k cos nb =0, )\=£r(;<9+ n?)

n’ cos n'b4k sin 1'0=0, )\_~--( *+n'?)

The summations are to be extended, first over all the values of n and n’ corre-
sponding to the roots of the above equations, then over all values of « from 0 to o,
and finally over all integral values of m from 0 to oo ; the summation with respect
to « will be of the nature of an integral, as will presently appear.

§ 6. The investigation of the values of the coefficients is attended with some dlfﬁculty
owing to the difficulty of interpreting the values of J, for infinite values of the
argument. I have therefore sought to evade these difficulties by conceiving the plate
as the limit of a spherical shell of finite thickness but of infinite radius, and keeping
in view the general course which the solution for a spherical shell takes. It is
possible to obtain the solution for any spherical shell, and it might seem therefore easy
at once to adapt that solution to the present case: but unfortunately the adaptation is
also beset with difficulties of a peculiar kind, and therefore we can do no more than
take the steps of that investigation as guides in the present problem. The main light
which the case of the spherical shell gives us is that we have to regard cos mepd,.(xp)
as a degraded form of the spherical surface-harmonic cos m@P,"(cos 0), obtained by
putting '

sinﬁ:i,n::xa. N V- ¥

MDCCCLXXXIL 2 U
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a being the mean radius of the shell (sensibly constant), « a finite quantity : to make
the passage clear we know that, if s=sin 0, P," satisfies the equation

(- LBy {( (n4-1)— m>}y=o (A

S

(see HEINE, < Kugelfunctionen,’ p. 216, 2nd ed.) ; which we may satisfy by

y=C "+ A"+ Aysmtid L)

where
A {(m+2)*—m*} 4n(n+1)—m.(m~+1)=
A, {(m+4)2—m*} +[n(n+1) — (m+2)(m+3)]A,=0
A {(m+6)2—m?} [n.(n+1)— (m44)(m+5) JA,=0, &ec.

If we now put n (infinitely great) =«a, s:%, we find

4 Cu" 2p? xtp #5p8
Pm—a’” <1_4 m+1+4 8.m+1.m+2 4.8.12.m+1.m+2.m+3+"'

=T 0Tk - (AY)

IC??’L am

the value of the constant C,” being obtained from considering the value of P, +s"
when s=0; in fact we have (HEINE, 2nd ed, p. 207),

ﬂ_mnf('rb+m)'
Gz BoSr @A)

This constant, we shall keep, for the present, unreduced.

From the theorem er”.Pm"’ sin 0df=0, we derive at once
0

[ITaplpdp=0 - ()

We have moreover (see HEINE, pp. 327 and 253),

D Mg 2 (ntm)!(n—m)!
_[O(Pm)2s1n0d0—2n+l(1'3'5“.2—7;71)2. (A

and, correspondingly,

Kimgtmts D (n+m) (n—m) 1

J\ J (Kp)[ pdp— (C 4):7 97?/+1 (1 9 — 1) 22711,(”7/ )2
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If we take into account that n is infinitely great compared to m, we see that
(n—m)l=n!+n" and (n+m)!=n!Xn"; also

1 1.3.5...@2n—1)
——Om, f
C.r 2rm n' nm

whence

x~ma2m +2 1

R

[[3.Geprpto=""

But n=«a and the successive values of n correspoud to the successive integers

" 8K=i; hence the above integral becomes

ij(Kp polp—lc&c e Ay

. We are now in a position to find the values of the coefficients (A), (B) in the
expressions (40) : for it may be easily shown that, if n,, n, be two different values of
n, 0y, 7'y two different values of 7" from equations (39), then

+b

+b +b
f o8 1,z cos Nyzdz=0, j cos Nz sin n'zdz=0, .( sin 7/42 sin 7/zdz=0
- -

- L)

27'b —sin 20/

2nb + sin 2%}2
S o’

P
J cos? nzdz=
b 2n

o,
'( sin? n'zdz=
)

From these results we may separate the different values of A, B: for since when
t=0, P=—P,.
We have in fact

1 2n

P2y
A=——. Sl sin b KOK . L cos mc/;dqu pJu (xp)olpf Pycosnzdz . . (42)

B may be found in a similar manner, and likewise also the terms depending on sin md,
Collecting all these results for the value of P (¢, p, 2) at an external point on the
positive side of the plate, we have (z positive)

o ' @ o
= —13,[ cos m(p—§)d4 [ ke, (kp)di [ PTalp)dps

{ . 2m cos nb

, ' 2 'b +0 11 3.0
b+ sin 2nb" P’y cos nz'dz’ +e . n—-s»lginudj' P’ sin n'2'dz } .. (43)

“on/b—sin 20/

The last % is to be extended over all the values of n, n” which can be derived as '
roots of the equations in these quantities. The first 3 denotes that the summation is
2 U 2
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to be extended to all values of m. It is to be feared there is no simpler mode of
writing the above result; but the approximate solution of any given case could be
obtained from it by carefully conducting the approximations.

Case of an indefinitely thin plane at rest.

§7. We may pass from the above problem to the present by making b indefinitely
small. If R be the resistance to the current per unit of area

2RZ)=0’...........(44)

and we have also to enquire what the values of # and »’ derived-—
(a.) From the former solution will now become. To do so I shall write the equation

for n in the form
0 sin — kb cos 0=0, where §=nb.

(1.) When «b is small the roots of the equation are approximated to, in general, by
sin #=0, or 0=jm=p, say.
Let 6=pB-+x, then to find x we have

(B+) sin x=«b cos .

Expanding sin 2 and cos # in ascending powers of x, we obtain, after some reduction,
« in the following series of powers of «b
L Lo OB s
Oc—IB.Kb——BSKb s PSR S

moreover
RO
_ 0o o
A= 2W(K +n?).

Hence, tn general,

o b1 g 64 o I
nb_jw—l—ﬁr kb o b gy O34 ... |
r (45)
_ R o o Fa?—1 979 18+ 25%m? _—
_2_77_6<‘77T+2Kb+ o kb — Py S S _Jl

(2.) But there is a root of the equation for which n b is very small given approxi-
mately by n?b*=«b; expanding fully the equation 6 sin §—«b cos =0 in ascending
powers of 6, we find

0= kb= L0 4 ...
| [ (10

= Rk 3 )
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(0.) In like manner, the equation in 2/, which is

7n'b cos n'b4kb sin n'b=0,

is satisfied, approximately, by n'b_-—*—ﬂ m=ea, say: and more accurately byn'd=a -+,
where

(e4x) sin x=x«b cos x.
This is precisely the same equation as before, and gives

6 + o?

b

“1 ., 1842
x———-( P t4“K'b3+...>

K31)3

n'h=a-4 ! kb— EZ;KQbQ —
(47)

27h

L__v___J

When we make b indefinitely small, retaining R as a finite quantity, all the values
of X\ and \" become indefinitely great except those which arise from the approximation

R
in n, n*b*=kb-+ ... ; \is then =2~W_’f. Rejecting therefore all other values of n, #/,

A and X\, and confining our attention to the parts of P outside the plate, we tind
[writing A cos nb under the single term @],

z positive, P=3, cos m¢.J ”‘(Kp).@e“(“g‘:) [
2 negative, P=3 cos me.J"(kp). Ae(* 2r) J

the term in b in the exponential e being neglected. _
If, at the surface of the plate, P=f(x, y, ¢), then at any point for which z is
positive,

P= f<x Y, t+2m>1

and at any point, 2z negative, o e o (49)

P=f<oc, Y, t—-%m>J
This is MAXWELL’S result.

T have dwelt somewhat fully upon this case because it brings out very clearly the
mode in which the terms depending upon all but a certain number of the values of
X and N disappear when b is made indefinitely small. When we consider the case of a
spherical shell, we shall find that a similar reduction takes place.
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Induction of currents in a solid sphere at rest.

§ 8. When a solid sphere of radius a is influenced by an external magnetic system
whose potential is Q), we may express the vector potential of the latter by taking

d
&;(POT), FO= 0, GO= -

Qy=
dx, dy, dz being now coincident with dr, 7d6, » sin 0d¢.
The equations of electromotive force, viz. :

dF +F)  dy
dt dr
CdG+G)  dy
7= dt rd6
o AEAH)  dy

= dt 7 sin Od¢

oU = —

ap, ap,
sin 6dg’ 0" 6

(50)

(51)

and all the conditions of the problem may be satisfied by taking

dp dp

=0, F=0, G=—57, H=04

dd @ >

u=(), v=— €d¢ =8
4rd=— v *P. J

P satisfies the characteristic equation

9 op_ P
47rv P—dt"

or, more fully,

(52)

2 > d dp 1 P 4
dP 24P 1 <31110 >+ P__ 4w dP .. (53)

r dr ¥ r2sin 6 d6 7 sin? @ d¢>2

outside the sphere P satisfies the equation

vP=0;

o dt’

and we must have the further condition that F, G, H and their differential coefficients,

or (which is the same thing)
P and Ofl—f} .o

(54)
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are to undergo no sudden change in passing across the surface of the sphere, and that
P must be finite at the centre.
The equation in P (inside the sphere), is satisfied by

P=AUS,M)e ™% . . . . . . . . . (53

where U, is any surface harmonic of degree n, and S,(\r) is the solution of the equation

#Q  2dQ 'n(n+1)
dﬂrdﬁ(z >Q0.......(B)

which does not become infinite at the centre. In fact the two solutions of this
equation are, as I have elsewhere shown

1 d \» A
s00=000 (i 5
ldcosx!%""--.(Bl)
7 7
Tn( )\.7') = ()\.’7')”<7\7 E) ~ J|

of which the former vanishes at the centre, except when n=0, and the latter vanishes
at oo ; it is the former of these expressions which is chosen.
Outside the sphere the value of P is

P=BU,.r~ ™% . . . . . . . . . (56)
and the above boundary conditions give

8,0a)=Ba~, A, %= —B,(n4 1)a==,

or

B=a""LA,S(\a)

et N C14

This equation is also equivalent to the following somewhat simpler one (sec equation
B;, § 10),
Sima)=0. . . . . . . . . . . (57)

The values of A being thus determined, we may proceed as in the former problem
to find the coeflicients due to any initial circumstances, and thence the state of the
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sphere may be readily deduced by the principles which have been already explained.
I may observe that U, is to be expressed in the system of tesseral harmonics

o s

(A cos m¢p+ B, sin m¢) P,

The rest of the process needs no remark.

Spherical shell of finite thickness.

§ 9. Let the external and internal radii be b, a; all the conditions of the problem
will be satisfied by the same general assumptions as to the forms of the electro-
magnetic momentum of the currents, the current function and of the potentials of the
external magnetism. The characteristic equatibn remains

o dap

T
and, as in the former cases, since there is nowhere flow along the radii to the common
centre of the surfaces and no free electricity, the currents are entirely confined to the
interior of the shell, and we shall have as before for boundary conditions, that the
vector potential of the currents in the shell and its differential coefficients sustain no
sudden change at crossing the surfaces. Outside the shell and within its inner
surface, the vector potential is given by expressions of the same form as in the

substance, viz.:

ap - dP
F=0, G=— sin fd¢’ —de’
but in the space free from currents
v iIP=0.

At the boundaries all the conditions are satisfied by having
ap
P and o

continuous when r==a and when r=Db; we must therefore take

-

within sphere of radius a, P=3CrU,e Nt w,
in substance of shell, P -—_:2.(AS,Z+ BT,)U,e™ .

at

B l
without sphere of radius b, P=3Dr="1.U e™*"ir J
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S, and T, are the expressions referred to in last article: they are the particular
solutions of the equation
PR 2R (), D)
dr? +7" dr +<>\ 72 )R 0-

If we write x=M\r, S, and T, are i'espectively equal to

1d ”smx and 2 1£> cos o
. z du z v da z

To express the boundary conditions we shall write
a=DM\a, B=Ab, S=S(Aa), '=S(\b), &c; . . . . . . (59)
we have, accordingly,

Ca,”:AS—I—BT, 7;10&%—1:)\<AZ*S+B%>

1
N S )
Db—ﬂ—1=AS'+BT',_(n+1)Db-n+2=x< a5 dT)Js

These equations may be put into much more elegant forms ; but to do so we require
various properties of the S— and T— functions; and as these are not very generally
understood, I shall here digress into a brief sketch of the whole subject, confining
myself as strictly as possible to those properties which have a direct bearing on the
present question.

[ Properties of the  Spherical Functions.”

§ 10. If we write a?=¢, and work out the differentiations and integrations, it can be

readily shown that
1 d\" sin x —— 1 d =7~1 cog xw

1 d\rcosa tlon—1 (1 A —n=1 gin @
v <xda:> z =(=1)" < da o J[

The constants introduced by integration must be so adjusted as to make a certain
number of terms in the second equality coincide : the others will be exactly equal.

If we write each member of these two equations, as before, respectively S, and T,,
and differentiate the quantities on the left-hand sides of the equations, we find

(Bs)

dT,

ds,
mq”_pl"—w'_ /nsm .Z‘T”H——w d

dxz
MDCCCLXXXI. 2 X

—-nT, . . . . . . (B)
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Diﬂ’erentiating the right-hand members we obtain

—aS,=a D 1S, —aTu = kT . (By)

These are the fundamental formulee of reduction in these functions: if in the latter
we write n+1 for n, and substitute the values of S,,; and T,,, from the former, we
can show easily that S, and T, satisfy the differential equation

i@_}.gd—R+<] nn“)R 0. . . . . ... (B

& dx

. . . . dsﬂ
and are therefore the two solutions of it. If we eliminate from the above x T and

daT,
@ —", we find

(2n+1) %—I—Snﬂ—l-sﬁ_l:o

T,
(2n+1) 4Ty + Ty =0

—
5

whence also

S Ti—T,0S,=S,T,.,—S,_,T,. . . . . . . . (B
and, by successive reductior:s,

S LTS =8 T=T8=0 - . . . . . . (B
and thus also, by (By),

ST =TS ==t . . (B

We obtain also directly from equations (B,),

a8, . dT, L1
Tn z];_ S” dx :Sﬂ_‘,lTn'—'an_lbn:% . . « . . . . (BIO)

a well-known result. ]
11. If we now turn to equations (60), we find by elimination

A (T %—S i%): —g71(} <oc %-—n’l‘)

\B (Tifl-f sf;> 10 <oc -——ns>
A8 QN oy (g :
)xA(TdIB—SEE>_ D<,8 +(n +1)T>

=4h=2]D (,8 dS/-l—(n +1)8 >
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These may be written

A=—\"T,, (\a)C,  B=-4Na*8,,,(\a).C
A=-Nb=*T,_(A\b).D, B=—\b—*18,_,(Ab).D.

Introducing a new constant @, we may therefore put

C= @.b=*1S, ,(\b) 7

A= — RN, (), (\D) |
B= 4 @Na*b=*1S, ., (\a)S,_, (\b) |
D= —®&a"**8,,,(\a) J

with the further equation, for the determination of A,
Si1(Ma). Ty (Ab) =T, 1 (Aa).S,_,(Ab)=0 .

To construct this equation, I observe that

S g (1 d> sin z
ny =

2 dx z ’

may be written
X, sin <x+n—2—7r>+X2” sin <x+n-———;17r>
and that

T,, which =" <31: dw) sm< —|—m/

may in like manner be written

X, sin <9('+~——1r>—|-X sn< +n—2l—277> .

In fact
w.Xl,z_:l_(n—l)n(gil)(n—{-% i2+(n—3)(n—2)2:4.'é.§n+3)(n+4) .016‘4_&0.
wnt1) 1 (n=2)(n—1)... (n+2)(n+3) 1
e Xr=" 2.4.6 AT

With this notation we may put

333

(61)

(62)

(By)
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Si(Aa)=A"*sin <)\a+~~~ >+A “+1 6os ()\ -|———— 11')

1
TnH()\a):AlnH CcoSs <}\a,—|— — 7T> n+1 sin ()\a—[-?H_ 77'),

n—1
T

S,—1(\b)=B,*"1 sin ( Ab-+ 77) + B, cos <)\b+

T,_;(\b)=B;""1cos <)\b + E—g—l 7T> B,»1 sin ()\b 4+ >
Substituting in (62),
(A2n+1B1n-1_Aln+1an—]) cos ()\(b—a) _77.) —_ (Az"HBz”—l-I—AI”HBl”_I) sin ()\(b__a) __77)__—__- 0

or more simply

(A_1n+1B1n—l +A_271.+1B2u-—1) sin.)\(b _a) —_ (A275+1Bln—1 —_ A1n+lB2n—1) cos.}\(b-—a) =0.

This equation may be further simplified ; for, putting

7n—1

Xn’ n+1’ t nﬁ—B -1 (63)
1t becomes
sin {\.b—a—a'— B} =0,
whence
Ab—a=a'—fB' 4w . . . . . . . . . (64)

here o’ and B’ are the smallest positive angles which satisfy the above equations; and

. . 1 ,
% may, when 2x>n(n+41), be expanded in ascending powers of by Grecory’s

series.
Up to %‘*’
Cafn+1)  (n—Dya(n+1)n+2) 1 +1 1
3=n(n2x )+(n )n<g‘4 ) );5—%(27%4.6 )[3.(119—}-%)2-—8(7124—71)-{—12].E+... (65)

The values of & and B in terms of MAa and Ab may be similarly found, and when
substituted in equation (64) will give the means of finding all the values of \. These
being found, the complete expression for P may be written down and the values of the
constants therein determined from the initial circumstances by known methods; we
shall therefore proceed to find the value of P at a point outside the shell.
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The potentials at a point outside the shell and in its substance may be written
respectively

Ag

b\n+1
P:ED'(;) U, &=t
and

P=SDNBS, (@) T,y (B)— T@S, o (B))o= o

wherein, as before, z=\r, B=A\Db.
Let us write

H,=(S,T,_,(8) =TSy (WD . . . . . . . (66)

where T,_ (8) and S,_,(8) are to be treated as simply certain constant multipliers ; H,
will satisfy all the formulee of reduction which we have found to hold separately for S,
and T,; and we have further these particular values

H,(8)=1, H,,,(#)=0 by equation (62)

2n+1 CZntlopo- (67)

H (18) Xb

and by the equation (B,), H,,,(8)=—

Now H,(x) satisfies the equation

¢'H | 2 dH m(n 1)\ e
dr? +r “dr +<)\ - 2 >H—0’

r

and if H’ correspond to anyother value of \, viz.: X/, we have also

PH 2 dH | [ . D\,
dr? +9 dr +<)\ s )H_O’
whence

{r <H@i H’%)}b+(x’9—-)ﬂ) [‘rrErdr=0.

But, by equations (B,),

H,
7"0%77 =nH,+NMH,

dH
"

=nH’,+NrH’,
and, therefore,

(V2= [ 1S HH dr= {qs(xH,LHH',,—xH;LH',,H)}?’. L. (69)
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But if ) be also one of the roots of equation (62), both H,,, and H’,,, vanish at
the lower limit ; and at the upper limit

2n+1

H,=H,=1 and \H,,,=X Hiyp=—""

hence

b
[PHE.dr=0. . . .. (69)

If we put N'=A+-86\, and then make S\ infinitely small, we arrive at the value of
b
§7'2H2dr: for
) - dH,
H'\,= Hn(M"+8}\.r):H,,+T8)\7i;

1
=H,+ 8\, ,,+aH,) by (B,)

and

o —
Hy=H,(A+8\.7)=H,,, +5 (=MH,—n+1H,,,) by (B,)
Putting in these values in (68)

[ . [3{)\¢(H,,2+H ,+1)+2anHm}]

W( n()\a)T,,__l(Xb)-—T”(}\a)Sn-l()Cb))Q (70)

Let us call this integral I,; we may now separate the coefficient D’ due to any
term of U,, say cos m¢P,”: for if we put in equation (58) t=0, P=—P,, multiply
across by cos m$de. P, sin 0d0.H,2*dr and integrate throughout the body of the shell,
all the terms on the right hand side disappear except those which have the some m,
n, and X ; and, if we note that

2 (ntm)! (n—m)! 7,
2n1 (135... 2n—1)p "

2 ™
f cos? mepddp=rr, ‘( (P.")? sin 0=
0 0

" gay,

we find
m & b
D=~ [ "cos mepdg| P, sin 04| PH 4%y 73,1,
0 0 a

The coefficient due to sin m$P,” may be similarly found.
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Putting all the results together we find for the value of P at an outside point

=—2& 82 [ — ) . [ BLA(0)P(8) sin a0 | TL 0T drt
P=— oSS0 5[ eos m($— )i [ P(O)L() sin 00 | L0

™ 9

Xe“wmt . .. . . (71)

From this formula the action of the shell on an external point due to any inducing
system may be found. ‘

We proceed to inquire what will be the result when the shell is supposed to become
infinitely thin.

Infinitely thin shell.

§ 138. Putting b—a=c, o=Rc, the exponential-function e 7, will be finite only for
such values of X\ as make M\c finite : if \c become indefinitely great the corresponding
terms will rapidly disappear. More accurately, the terms for which A is finite will
die away infinitely less rapldly than those for which it is infinitely great.

If, in the equation

Ae=a'— B+,

we take as a first approximation )\=%r, we may readily expand \c in a series of the

form tr+E,.c+E;?+ .
great.

The corresponding system of currents will rap1dly decay. It is therefore by putting
+=0 that we obtain the currents which have the greatest persistence. The equation
in A is

(n+2)(n+1) (n— 1)n

2, —
Ne= N

-+ terms in A7, N72 L L,

and, for a first approximation, b=a and

x2c=£~(2n+1) R V£

Hence, by equations (58) and

a\n+1
for points outside the shell, P:S@<g> ' U e ama@n 1 1

4

» within the shell, P= E@< > U”e—:a(:,m)t

To interpret these results :—
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(1.) For an external point,

7 h
we observe that when ¢=0, P:Z@(;) HU,,

W
—~
~1
H

S

R 2/ \»+1
and that, always, P=e"m‘.2@< > U,

r

R
where a’=u¢ om"’ J

The result, therefore, of an impulse on the sheet is such that initially the currents
exert the same action on an external point, as a positive image of the magnetic system
placed at the position of the electric image at the surface of the sheet.

The points in which this imaginary magnetism is distributed then move towards the

R
centre according to the law p'= pe‘z;r':i, while at the same time the intensity at each

Rt
point increases according to the law I'=Te¢im.

When a=o we may take p=a and p—p’:2—1:—rt, and I’ is constant; this result

reproduces MAXWELL’S expressions for a plane sheet.
(2.) For a point on the other side of the shell

Rt P \”
P=e‘m2.(’£<d,~,> U,
VVhe]_"e . . . . . . . N . ( 75)

” B¢
a’'=aetim

The effect is, therefore, the same as if the inducing magnetic system were reversed
in sign, and the points in which it is distributed were to move off to infinity in lines
passing through the centre of the shell according to the law

. om
p =p627ra,

the intensity at each point diminishing according to the law

T'=T¢ i,

§ 14. This result is so interesting that it may be well to give an independent demon-
stration of it. Employing, as hitherto, spherical coordinates, let ® be the current
function for the currents in the sheet; P, the potential due to imaginary matter dis-
tributed over it, with surface density @; the magnetic and vector potentials of the
current system may be written
1 dp _aqp

1d
Q——_; CE(P”’ F=0, G._.--I—g sin 0d¢p’ T ade
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The components of the current are

dd dd

w=0, 0= —reag T ae

The equations, therefore, of the current are

R 4@ PPy
4 sin 0d¢p~  asin Odgdt adf

LRde_ vy
dr dO0~ ' adfdt asin fd¢’

which is satisfied by
1dp

Y=0, o=_7,

Outside the sheet and within its inner surface,

dP dpP
F=0, G= 0dp> — df
v ?*P=0.
Hence
n+1 R
outside P,= 2A<§> U, eVt
inside P= 2A<§>7ZU”6—A2£¢;

1 - ek, MR
at the surface & = —;LEAU WLVE

—

But we have also the further condition

dp, dP)\
< dr~ dr ),.za— dr®,

hence
)\2=§(2n+ 1);
and therefore

a n+lv_ i
P0= 2 A<;> Uﬂe—(2n+1)4m‘f,

7\" o R
Pz, — 2A<_> Uﬂe-\271+1)4ﬂ_a/'

a

This corresponds with the result obtained from the more general investigation of
last article.
MDCCCLX X XT, 2 Y
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Mowving conductor.

§ 15. When the conductor is moving in any manner, the parts of the electromotive
force due to the motion are, in the directions of the three axes, respectively equal to

'y@./ — B, az— 'yéc, Br— o@.

The form of these expressions shows that, when it is desirable to resolve the
electromotive force in any other directions at right angles, the components will be

yV—=BW, aW—+U, U=V . . . . . . . . (1)

a, B, y being the components of magnetic force, and U, V, W the components of
velocity in these directions. When the motion of the body is uniform, as when it is
revolving uniformly round an axis, and when it is symmetrical about this axis, the
electric state may after a certain time be supposed to have become constant ; there is
then no variation of electric displacement at each point of space, and the currents of
conduction become the total currents. We have then

ag
u= o-P; K Sr
and therefore
df _ )
m+@+m =0. . . .. (2

There is thus no free electricity in the substance of the conductor, though there
may be electric potential : and the normal component of the current across the surface

of the body is zero : that is to say,

lu4mv+nw=0 o (3)

It is to be noted here that we are here dealing with the state of definite points of

space : these are invariable. The different parts of the conductor take d1ﬁ"erent

conditions as they move from one point of space to another.
Since the currents are confined to the conductor the vector potentlal due to them

and its differential coefficients will all be continuous on passing across the surface of

the conductor.
With these preliminary observations we proceed to the consideration of a solid of

infinite extent and thickness bounded hy a plane face, revolving round an axis normal

to its face,
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Infinate solid bounded by plane face.

§ 16. Let the axis of z be chosen to coincide with the axis of revolution and the
origin on the face, and revolve along dp, pde, dz ;

U=0, V=wp, W=0 . . . . . . . . . (4

o being the angular velocity supposed uniform.
The components of electromotive force are

d
P= wmf—di; |

iy
Q pd¢ % (5)
R=—wpa—%'J

The external magnetic force may be represented by

ap, ar,
Qo"__Q Fo= " pdgy Go=, 0’ Hy=

and all the conditions of the problem are satisfied by taking for the vector potential
of the currents in the solid
apr ap

F:—-"—%, (Jr=g;, H: 0.

The total magnetic force is the sum of the parts due to the currents in the sheet
and the external force: it is therefore given by

clz(P + Py . B= dQ(P E(P+Py) 1 dP+Py\ , 1 #@P+Py)
dpdz pdedz ’ p clp dp p* dd?

The currents may be denoted by

dnd=—v*P . . . . . . . .. . (6)

If we now substitute for P, Q, R their equivalents ou, ov, 0, the second of
equations (5) becomes

Ly

i = pdg o (68)
2 v 2
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which is satisfied by

ax d 1, |
T=pa, , O=— d;f:"ZEWP Y ()

and from the last equation
BP4DP) Ay

P dpdz O-pdpdﬁ' 0,
whence
ox=w(P+P) . . . . . . . . . . (7)
By equation (6,) this may be written
2 9Pzt (P+P,) (8)
471_ —_ d¢) 0 . . . . . . . . .

This is the characteristic equation of steady currents in a rotating conductor : we
may show that the first of equations (5) is also satisfied, for this requires that

_od®_ d_dP+P)  odP+P) _d d
Tode  CapP  ap T apr T “apPap (P+Fy),

or

—O'CI>—w—¢ (P+P,),

which corresponds with the former equations.
All the conditions of the problem will be satisfied by determining P subject to the

following conditions :—
(1.) It must satisfy equation (8) within the solid, and vanish when 2= —o.
(2.) ’ ,, vV 2P=0 outside the solid, and vanish when z=-+4 .

(8.) P and %g must be the same outside and inside the solid when z=0.

Let us now suppose that P, can be expanded within the solid in a series of the form
P,=3(Ae™ +A’e")J,(kp)e=: each of these terms verifying the equation v *P;=0 as
they ought to do, and vanishing when z=—ow. We shall show presently how this

may be done.
The corresponding part of P due to Ae™ is

=—Ae"], (kp)es+I . . . . . . . . . (9)
where
dall
erl'I +o— s

Putting therefore
n=Be"*J,(kp)e. . . . . . . . . . (10)
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we have _
. Amme
e
ke p=1. P
o, Amne .
= /\/w—@ T::]:(p—zq) suppose.
We must take only the positive sign since II=0 when z=— .
Thus
P=e"*J,(kp)(— Ae“+ Be) within the solid ;
outside

P=¢"*J,,(kp).Ce™,
and the conditions of continuity give us

—A+4+B=C, —kA+pB=—«C,
whence
2k

B= .
K+

A, 0=""E4A
/c+,u,

(12)

Let us confine our attention now to the value of C which expresses the action of

the sheet on external points

(A KPP RV
C—A'x+p—gi_A(p +q'7).
similarly, corresponding to the term A’e™"?, we find

C'=Ap'—q5).

Let
Aet 4 A'emm =@ cos m¢p+ 3B sin me
Ceint 4 e =@ cos m¢p~+IB sin mep
C=C+CU=Rp'+By |
P=(C—C)i=Bp—Ag |
Let

P =M.,
then corresponding to a term in

Py= (& cos m¢-+23 sin me)e<J . (xp),

there exists in P (outside) the term

[AM cos (mep+9)+WM sin (mp—+9) Je™J,.(xp)

(19)

(14)
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the term is therefore altered in intensity in the ratio M’ :1 and the azimuth increased

by the angle 9. -~ If we put
. = M2,

we can easily prove that

9 _ sin 3 ,_T 1 [Msin 9
T p+q sin 9+ 0039’9'—2'1' tan < i

where also

tan 29= 477:&0): M= x*4- <4_7";_"_“l>2

The action of the solid will therefore be the reverse of the original magnetisation

and M’ is a proper fraction.
The coefficients @, 38 are found by considering the value of P; when 2=0; call it

Z,. Then as we have found

—25 cos m(p— q')')clqu KOlKJ,,l(Kp)[ Zdu(kp)p'dp’. . . . (15)

Plate of finite or tnfinitesimal thickness.

§ 17. For the case of a plate bounded by two parallel planes at distance b apart,
we may satisfy all the conditions by taking the same general forms for the vector
potentials and for the currents in the sheet: and the characteristic equation for the
determination of P will remain the same as before. If we suppose the inducing
magnetism distributed on the positive side of the plate, we may express P within the
plate as a series of terms of the form

A ez'md)Jm( K P) ekz’

the origin being in the axis of revolution, and on the positive surface of the plate.
The forms for the vector potential due to the currents are all glven by taking for P a

series of terms of the type

1. In the substance of plate — Ae™*J,,(kp)e<+e"*J,,(kp)(B,e* + Bye™)
ii. Outside the plate, z positive, ¢”*J,(xp)Ce
iil. Outside, z negative, e”*J,,(kp). Det*

V g 4rwm
= K" —1 .
K c

where
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/P . ' .
On the two faces of the plate P and (ZZ—; are to change continuously on crossing the
faces.
The final result of the calculation gives

N i) Gt 0 :
C=A s — - 19)

when b is. indeﬁhitely small, we treat R=" as finite, and therefore while  is finite u

b
is infinitely great, but p®b is finite and equal to — Wlinw.z. To find C, we have then
G IC.‘.’:__M2 eu.b_g—p}l

C+A 2% ./c(e'*b —e#) 4 u(erh 4 o7mh)

()b 1-]—6—|—...
3 2% kb.u?b?
K 1+/cb+'-l% + *’gm-'-{- ..
2mom .
_——Icﬁ_.l . . . . . . . . . . . . . . (17)

If Q be the value (due to a positive image of Pg) on the positive side of the plate,
and P the value of P due to the currents,

Q=3Ac"J,(kp)et, P=3Ce™J, (kp)e™
then, putting
_ 27w
“= R
ar - dp_ dQ '

This corresponds with MAXWELL'’S result ; see also equation (34).

Spherical shell and sphere.

§ 18. We shall now treat the case of a spherical shell, whose outer and inner
radii we shall take to be b, a.

The expressions for the electromotive force are (taking dx, dy, dz to correspond
respectively with dr, »d0, » sin Odd).



3 PROFESSOR C. NIVEN ON THE INDUCTION COF ELECTRIC
. dpr
P=—owrsin 0.8— o ]

Q=+m~sine.a—fd"; i ),

— dp
R " rsin 0d¢

Since, with the present notation, we have U=0, V=0, W= sin 6, we shall choose
the same forms for the vector potentials and current-functions as i

_ A4 dp,

o= z(POT) Fo=0, G ~sin od 0= g’
ap . dp
F=0, G= T sinfdg’ T db°

The magnetic force a, B, v is due to both potentials, and thus (see § 3 B, ¢),

_If 1 d oo gdPHD, 4L PP, =1 P+P,r 1 &EP+Pur
sin 6 d6’ a0 %111“0 dg¢? r drdd 7T rsin®  drdg

The currents will be denoted by

a® a®
U= VET G0 0y U ae?
where
dr®=—vVv?P . . . . . . 0 0 (20
observing that '
v ?P;=0.

Substituting for P, Q, R in terms of u, v, w by Omms’ Law, the last of equations (19)

becomes
AP
T o= 7*sin€d¢' Coe e (21y)

This is satisfied by taking
‘ X x '
O=—=— i¢ Y=0.7 sin 0 Coe e (21y)

and the first of equations (19) becomes

. PP4Pr L%
@ sin 0= 25t —o sin 07 =
or

Ao-x:w.(P—I—PO) . .  S (21,)
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Equation (20) now becomes

oVl d(Pv+PO)
=0T g e e e (22)

the same characteristic equation as in § 16.

We may now show that these results verify the second of (19) as the reader may
easily convince himself by substitution.

(@.) When the inducing magnetism or currents are outside the shell altogether,
P, will consist of a series of terms of the form

A egzaz(}>Pm7z. (%)ﬂ . . . . . . . . . . (2 3)

and for the value of P we shall have

i, in substance of shell (b>7>a), P:[_A<{3’>”+Bls,,(>u-)+BzT,,(>w~)}ewa,,n
- . i b nt+l | ’ 7
i1. outside shell, »>b P:C.<;) P : L (24)
iii. within shell, 7 <a .P:D.(Qnefm"’l’m"
and where
4rme i
P
M= e (25)

we shall put as before

x=Mr, a=Ma, B=\b, S,(a)=S, S.(8)=S/,
When r=a,

a\”" < v T % i
—A(p [ +B8+B/1,=D(},

ar—1 das, d'l,l nD) ar—1
——Abn-I-B ~—|—B T
and when r»=bh,
/_A-+Bls/7a+]3 T/”ZO,
" dS'n dT’,,
—ﬂ)A+B1 3 +B,— B (n-l—l)

By the help of the formulee of reduction in § 10, we can put the result of the calcula-
tion of the new coefficients B,, B,, C, D into somewhat elegant forms.
MDCCCLXXXI. A
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Eliminating C and D we find
Blsnﬂ +B2Tn+1= 0
BIS'M..l +B2T,n—1= - gz—%tl,

whence we find for C, which is what we chiefly want,

n +1 Su+1T'1z "'Tn-a-lsln } i A. Sﬂ+1T/ﬂ+1 '_Tu+1s/n+1 . ) (2 6)

C=A{ —1— . L L =A. .
B Sn-}-lT -1 _T71+1S n—1 Su+1T/n-1 - Tn+1s’n—1

(b.) When the inducing magnetism lies partly within the shell (not in its substance)
we may take for P, a series of the form

A'ez'm¢P n(b)wﬂ .
w A\, 3

the other expressions for P will retain their forms except that we must take the first
n+1 2
term —A’C%) instead of —A<€> . The calculation of C is similar to that given above;

and, when the algebraic work is performed, we obtain finally

e+l QY -T,9
277,+ 1 <:>7 S ",T n—1 T nS n—1 } R . . . . (27)

O=a{—1 () ST TS
Su+1T n—1 "Tu+1S -1

There are two particular cases of these formule which possess a special interest.

(L) In the case of a solid sphere a=0, S, (Aa)=0.
The inducing magnetism can only belong to type (@) and may be represented by

P,=3 AP, (%)70: the external effect of the currents is then given, according to

(26), by

—_ S”"' ()".b.)_ i n l_:_)n+1
P=3A. 300 ¢P,,,.(¢> P )

and it is easy to deduce from this expression the value of P when P, is given by terms
which are real in ¢.

(IL.) In the case of an infinttely thin shell, we must put b=a--c.

This case is interesting as it constitutes an extension of MAXWELL’S result for a
plane plate. A glance at the preceding formule will show that we have here to
expand 8, (\a-4Xc), T,(Aa-+)\c), where v=n—1, n or n+1, in ascending powers of c.
Some caution is requisite, however, in doing so on account of the value of \: for
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drmw .

M= — 1, and if we put o=Re, and treat R as finite, we must suppose \% finite,

and therefore Ac is a small quantity of the order c¢*, while )1: is also of the order ¢

The expression
Sn-l— lT,v - Tn+1S,v

T, ds, d*T, aes,
=8, T,—T,,,S,+ e <S”+lc’l;—T"+1%>+ IN%? <S”+1—c_i;;- T"“:l—;g) + ...
If we write
arT, ars,
S7@+1 da? — bayy dap =Uyp,

we can readily find a formula of reduction in u,

-8, and T, both satisfy the equation

2L 222 (2 (1) Jy =0,

By LEiBN1rz’ theorem

2?42 (p+1)ay® V4 (2 +(p—) (p v+ 1)y @+ 2py D +p(p— 1)y =0,

wherein

whence

TR LA g (142D 4 2 ﬁ-1+m" D=0,

in which we have to write @ for @ in the problem before us. We conclude that u,,,
will usually be of the same degree in % as u, and when u, and w, are given we can
readily find the remaining values of w, But as each of them is multiplied by ever
- increasing powers of \c, it will be only the first one or two terms which will give finite

terms when we treat % as infinitely small. Let us now take up cases (a) and (b) of
last article.

{a.) From formula (26) and remembering (B;), we obtain

e

C+ A-— - 2n+1 ) Sn+1T,n'—Tn+1S/n ’
22z 2

C B Sn+1T’n +1 "Tn+1s’n+1 .
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now

, ) AT, ds,
S”+1T 72+1_T72+1S 7[,+1=)\C.<Sn+1——d—;ﬂ—Tn+1 d—;1>+ PR

=A\c. =355+ terms negligible.
dT, s,
Sn +1 F T71+1S n=— q,L+]_T;,—T7,+1S”+)\C<S”+1'[?“ '_Tn+17> + .
g [4%1
1
:iéa"z—l— v ey

and it may be easily shown, by working out the different coefficients of ¢, ¢? . . .,
that the terms neglected are really negligible.
Finally, we obtain

C : . :
C+A™ 27\11’ putting a for b in B.
4drmwa, ;
T S R

(b.) Here

C+A" 2n+1 <b>”+1 S =T

"”‘”;“ —_ - . / .
A Aa a Sn+1T n—1 —‘Tn+1s/n—1

. 1 .
The numerator is, as we know, Tt and the denominator

ATy asS,_
- S/z+1T77—1 "' T7z+1Sn—1 +>\C<Sﬂ+1 do T""'l de 1> + :

2n+41

043

the former of which set of terms = —

—i—S,,, and similarly for T; hence

To find the latter we observe that

the term in Ac is
.)\C[_(n 1)(2}L+1)+ 2],

0(-

the first term of which is negligible compared to the second : putting these different
results together, and making

b\n+1
<7t> =1 and B=a«,
L
C+A 2041 a? 1
A T T L 291,—}« [ VAR Mac

+~— T oan+1 ;
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and hence
C _ Aae
C+A'""  2n+1
drmwa
=T @n+DR" (30)

To interpret these results, let Q, be the value of P, which would result from the
magnetism inside the shell combined with the positive image (at the surface) of the
magnetism outside the shell, then ‘

b\r+1 |
QO‘=2(A+A’)<;> @B L. (8D

and

both the foregoing results merge into the eqﬁation

2rwa d

d
,,%C,l; (Pr?) =5 c_iqg (P+Qy)
or putting

3 : 2
P=Pr, @=Qs’, z="3" . . . . . . . . (32)

{ d d@® :
9*%?—wa£§=wa—@. T 2123

When a=c , and r=a-}2z, the above equation becomes

B__ap__ie
dz—mdqb—wdqb S (34)

indicating the spiral trail of images obtained by MAXWELL.

If in the sphere we put 7“=e§, we have

L0 (:1.)

which is analogous to MAXWELLs equation, and may be interpreted in a similar
manner,
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§ 19. We shall briefly verify these results by a direct investigation of the case of an
infinitely thin shell.
Putting as before

dd dd
u=0, ﬂ——m,’lﬂ—“@ e e e e e (36)

and denoting the vector potential of the shell by

apP ap
F=0, G=—ipn H=0p . . . . . . . . (D)

we know (MaxwerLL’s ¢ Electricity and Magnetism,” Vol. IL., Art. 670) that P is the

scalar potential of a shell of matter coinciding with the surface of the sphere where
surface density is

T (39

The equations of the currents on the sheet are

R dd_ . ay
—ind d¢—wrsm0.a 0 l

(39)
RO
a0~ 7 sin 0d¢ |
wherein, also,
1 d . dAP¥P,, 1 &P%P,
a_fr[sin 9 a6 5" 4 de T o de? jl

as in the foregoing articles, and where also » is to be put equal to a
All these equations are satisfied by

d ..
CIJ=—-£, Y=Ra sin 0;;5, Rx=w@P+P;) .

(40)

¥ now referring only to the surface of the sheet.

Outside the sheet P;= C(;)nﬂe"’”*"Pm”,
Inside ) P2=C<§>”eim¢]?m”’

P, and P, being the values due to the currents in the sheet. At the sheet
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P, _dap) _
<—d;; o )ma— —A47d®

A 8)

where

&=73(Ee™P,").
But P, being =3@¢"P," at the surface of the sheet, equations (40) give

RE=—owmi(C+@),
and therefore
droma.

C=—g7u:C+a) . . . . . . . . . (1)

the same result as obtained in the previous article.



